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Abstract—This work considers the trade-off between security
and performance when revealing partial information about
encrypted data computed on. The focus of our work is on
information revealed through control flow side-channels when
executing programs on encrypted data. We use quantitative
information flow to measure security, running time to measure
performance and program transformation techniques to alter
the trade-off between the two. Combined with information flow
policies, we perform a policy-aware security and performance
trade-off (PASAPTO) analysis. We formalize the problem of
PASAPTO analysis as an optimization problem, prove the NP-
hardness of the corresponding decision problem and present two
algorithms solving it heuristically.

We implemented our algorithms and combined them with
the Dataflow Authentication (DFAuth) approach for outsourcing
sensitive computations. Our DFAuth Trade-off Analyzer (DFATA)
takes Java Bytecode operating on plaintext data and an associ-
ated information flow policy as input. It outputs semantically
equivalent program variants operating on encrypted data which
are policy-compliant and approximately Pareto-optimal with
respect to leakage and performance. We evaluated DFATA in
a commercial cloud environment using Java programs, e.g., a
decision tree program performing machine learning on medical
data. The decision tree variant with the worst performance is
357% slower than the fastest variant. Leakage varies between
0% and 17% of the input.

I. INTRODUCTION

Cloud services provide on-demand access to cost-efficient

computer resources such as data storage and computing power.

However, when using these services, data is at risk of being

stolen by attackers observing the cloud, e.g., malicious ad-

ministrators. To ensure the confidentiality of sensitive data,

encryption can be applied to the data prior to transferring it to

the cloud. But, in order to use the cloud’s computing power

without compromissing data confidentiality, the cloud must

operate on encrypted data.

Unfortunately, efficient computation on encrypted data with-

out side-channels remains an open problem. On the one hand,

cryptographic techniques such as fully homomorphic encryp-

tion (FHE) [22] enable arbitrary computations that do not

reveal any information about the data computed on, but suffer

high computational costs [23]. On the other hand, Trusted

Execution Environments (TEEs) such as Intel Software Guard

Extensions (SGX) entail only little computational overhead,

but are vulnerable to side-channel attacks. For example, it has

been demonstrated that the control flow executed inside SGX

enclaves can be inferred from untrusted programs [35]. In fact,

SGX ”is not designed to handle side-channel attacks” [16] and

it is up to the developers to build their enclaves accordingly.

For some applications meaningful security can only be

achieved when all side-channels are eliminated. Consider for

example cryptographic primitives such as square-and-multiply

algorithms used for modular exponentiation in public key

cryptography. If private key bits are leaked through side-

channels [12], all security relying on the secrecy of the private

key is lost.

A broad class of side-channels can be avoided by pro-

ducing constant-time code not making any memory accesses

or control flow decisions based on secret data. Some cryp-

tographic primitives have even been designed such that an

implemenation likely possesses these properties [8]. However,

for more complex applications these properties cannot be

achieved without causing prohibitive performance. Consider

for example Dantzig’s simplex algorithm [17] for solving

linear optimization problems. This algorithm terminates as

soon as objective values of the current solution can no longer

be improved. It is extraordinarily efficient in practice but its

worst-case running time is exponential in the problem size

[30]. If we are to eliminate all side-channels, we must also

prevent the termination condition from leaking. Thus, any

invocation must have exponential running time. Since this

behaviour is impractical for any non-trivial input, engaging in

a trade-off between security and performance seems justified.

This trade-off does not only occur when outsourcing sen-

sitive computations, but the same trade-off can be made in

many other types of computation on encrypted data. For

example it also applies to secure multi-party computation

(MPC) protocols, which allow parties to jointly compute a

function while keeping their inputs private. By declassifying

(i.e., making public) partial information such as intermediate

results, expensive MPC computations can be avoided and the

performance of MPC protocols can be improved.

In this work, we consider the trade-off between security

and performance of control flow side-channels when executing

programs on encrypted data. Our motivation for focussing on

control flow is based on the expectation that the disclosure of

control flow information, e.g., rather than computing a circuit
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1 int p1(int x)
2 if (e)
3 y = f(x)
4 else
5 y = g(x)
6 return y

1 int p2(int x)
2 y1 = f(x)
3 y2 = g(x)
4 # obliviously select
5 # y1 or y2 based on e
6 y = select(e, y1, y2)
7 return y

Figure 1: Two semantically equivalent variants of a program.

as in FHE, results in significant performance gains.

Consider for example the two variants of a program pro-

vided in Figure 1. The first program p1 reveals the control

flow – more precisely the boolean result of the conditional

expression e – to an attacker capable of observing the executed

control flow. Based on the result of e, only either f or

g is computed. The second program p2 computes both f
and g and combines the result by invoking an oblivious

select function. Because no control flow decisions can be

observed, the attacker does not learn the result of e. Since

p2 has to perform c(f) + c(g) computations while p1 has to

perform only max{c(f), c(g)} computations, we expect p2’s

performance to be inferior to that of p1.

More generally, a trade-off for a program is determined by

selecting for each control flow decision whether it may be

revealed or must be hidden. Since the number of program

variants is exponential in the number of control flow decisions

and not all selections have the same impact on security and

performance, it is impracticable for developers to make such

selections manually for any non-trivial program. Our analysis

uses program transformation techniques to hide control flow

decisions and explore the security-performance trade-off.

Once a specific trade-off has been chosen, formal verifi-

cation techniques [2], [38], [44] can be used to ensure that

compilers do not introduce additional side-channels. However,

these techniques are orthogonal to our work since they verify

the compliance of an implementation to a given specification

(i.e., ideal functionality in MPC) whereas we modify the

specification by altering the security-performance trade-off.

To enable strong security guarantees, our analysis incor-

porates information flow policies, which allow developers

to define varying sensitivity levels on data. By defining the

appropriate sensitivity level, developers can also completely

prevent data from being revealed during program execution.

We formalize the problem of policy-aware security and

performance trade-off (PASAPTO) analysis as an optimization

problem and prove the NP-hardness of the corresponding

decision problem. To make the problem tractable we develop

two heuristic algorithms computing an approximation of the

Pareto front of the optimization problem.

In order to investigate the efficacy of our heuristics, we

implemented and empirically evaluated them using Dataflow

Authentication (DFAuth) [20]. DFAuth computes on encrypted

data in the cloud using a combination of homomorphic encryp-

tion and a small Trusted Module, for example an SGX enclave.

Compared to an SGX-only solution, DFAuth minimizes the

exposure to software vulnerabilities by providing a small and

program-independent trusted code base. Our DFAuth Trade-

off Analyzer (DFATA) takes as input a program operating on

plaintext data and an associated information flow policy. It

outputs semantically equivalent program variants operating on

encrypted data which are policy-compliant and approximately

Pareto-optimal with respect to security and performance.
We evaluated DFATA in a commercial cloud environment

on two use cases: an electronic sealed-bid auction program

and a decision tree program performing machine learning

on sensitive medical data. We chose these programs such

that we are able to explore all program variants in order

to evaluate the effectiveness of our heuristics, but complex

enough to be non-trivial in the context of computation on

encrypted data (e.g., FHE, MPC). Security was measured

using quantitative information flow (QIF), performance was

measured using wall-clock running time. The results of our

experiments confirm that our heuristics indeed adequately

explore the search space of security-performance trade-offs.
In the first experiment, the leakage of program variants

varies between 0% and 2% of the program input. The variant

with the worst performance is 99% slower than the fastest

variant. Our first (second) heuristic inspected 9% (7%) of all

variants and output 18 (13) variants in the solution set. The

heuristic solution is 5% (20%) worse than the ideal solution

obtained using exhaustive search. In the second experiment,

the leakage varies between 0% and 17% of the input. The

variant with the worst performance is 357% slower than the

fastest variant. Our first (second) heuristic inspected 1% (5%)

of all variants and output 14 (11) in the solution set. The

heuristic solution is 2% (14%) worse than the ideal solution.
In summary, our contributions are:

• We formalize the problem of policy-aware security and

performance trade-off (PASAPTO) analysis as an op-

timization problem and prove the NP-hardness of the

corresponding decision problem.

• We present two heuristic algorithms computing an ap-

proximation of the Pareto front of the optimization prob-

lem: a greedy heuristic providing fast convergence and a

genetic algorithm providing well distributed trade-offs.

• We adjust an existing QIF analysis to capture the ad-

versarial information flow for each variable of a program

such that we can support variable-based information flow

policies.

• We implemented our algorithms and evaluated them on

Java programs in a commercially available cloud.

In the next section, we introduce various definitions. Sec-

tion III explains how we quantify adversarial information

flow resulting from control flow observations. Section IV

shows how to quantify variable-specific information flow and

establish policy-compliance. Section V presents the PASAPTO

optimization problem and our two heuristics. In section VI we

apply our PASAPTO analysis to DFAuth. Section VII provides

details about the implementation of DFATA. Section VIII

presents the results of our experiments. Section IX discusses

related work before Section X concludes our work.
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II. DEFINITIONS

A. Programs and Computation

We model a program as a transition system P = (S, Tr, I,
F ) consisting of a set of possible program states S, a set of

program transitions Tr, a set of initial states I ⊆ S and a set

of final states F ⊆ S. We refer to the set of all programs as

P .

A program state s ∈ S contains an instruction pointer and a

map assigning each program variable a value from its domain.

We refer to the set of variables of a program as V . Without

loss of generality, we assume all variables to be integers in

the range Dn := [−2n−1, 2n−1 − 1] ⊂ Z.

Each transition corresponds to a program statement as

written in a programming language. We consider a deter-

ministic, imperative programming language with assignments,

conditional expressions, et cetera. We refer to a transition

corresponding to a program statement containing a control

flow decision as a control flow transition. By T ⊆ Tr we

denote the set of all control flow transitions.

B. Adversary Model

We consider a passive adversary who continuously observes

the instruction pointer of the program state s ∈ S during

an execution of a program. We assume the adversary knows

the program text, i.e., any transition and e.g., any program

constant. Hence, the adversary is capable of continuously

observing the control flow.

The goal of the adversary is to learn additional information

about the initial state i ∈ I , i.e., which input variable is

assigned which value. Since the adversary knows the value

of the instruction pointer at any time, we do not model it

explicitly in the following. Instead, we will assume that a state

s ∈ S only consists of a map assigning variables to values.

C. Information Flow Policy Compliance

In accordance with our adversary model, an attacker may

learn information about the program state from expressions

determining control flow decisions. To prevent sensitive data

from being revealed, it is thus desirable to ensure that such data

is either not used in a control flow decision or the adversarial

information flow caused by the control flow decision does not

exceed a certain user-defined threshold.

In the following, we define information flow policies allow-

ing these requirements to be expressed on a per-variable basis.

Our goal is to verify that a given program P complies with a

given information flow policy. If P is non-compliant, our goal

is to transform P into a semantically equivalent program P ′

that is compliant.

Definition 1 (Quantitative Information Flow Policy). Let P
be a program and V the set of variables in P . A quantitative

information flow policy Ψ is a map assigning each program
variable a numeric upper bound on the adversarial informa-
tion flow when executing P . Formally,

Ψ : V → R≥0 ∪ {∞}

where we use ∞ to denote no upper bound on the adversarial
information flow.

Definition 2 (Policy-Compliance). Let P be a program with
variables V and let Ψ a quantitative information flow policy
for P . We say that P is compliant with Ψ iff for each variable
v ∈ V the adversarial information flow for v when executing
P does not exceed Ψ(v). If P is not compliant with Ψ, we
say that P violates Ψ.

Definition 3 (Control Flow Removal Algorithm). A Control

Flow Removal Algorithm

T : P × {0, 1}|T | → P
takes as input a program P and a binary vector t specifying
for each control flow transition τi ∈ T whether it may be
revealed (ti = 1) or must be hidden (ti = 0). It outputs a
semantically equivalent program variant P ′ only containing
control flow transitions τi where ti = 1. We require that T
does not introduce any new control flow transitions.

D. Security-Performance Trade-off Analysis

Two fundamental requirements for an analysis of the trade-

off between security and performance of a policy-compliant

program are a function measuring the security of a given

program and a function measuring the performance of a

program. We model both as cost functions, i.e., in a the lower
the better fashion.

Definition 4 (Program Security Measure). A program security

measure is a function assigning a non-negative numeric value
to a given program.

μs : P → R≥0

Definition 5 (Program Performance Measure). A program

performance measure is a function assigning a non-negative
numeric value to a given program.

μp : P → R≥0

Let f = (f1, . . . , fn) be the objective function of an n-

objective optimization (minimization) problem, W the search

space and X the set of feasible points of that optimization

problem.

Definition 6 (Dominance). Let f and W as before and x, y ∈
W . We say x dominates y or x � y, iff ∀i ∈ [1, n] : fi(x) ≤
fi(y) and ∃i ∈ [1, n] : fi(x) < fi(y).

Definition 7 (Pareto-optimality). Let f and X as before. A
point x ∈ X is called Pareto-optimal with respect to f iff
�y ∈ X : y � x. If f is clear from context, we simply call x
Pareto-optimal. The set of all Pareto-optimal points is called
the Pareto front.

Definition 8 (Non-dominated set). Let X as before. A set
Y ⊆ X is called non-dominated iff �x, y ∈ Y : x � y.

Definition 9 (Policy-Aware Security-Performance Trade-off

Analysis). Let P be a program and Ψ a quantitative infor-
mation flow policy for P . Furthermore, let μs be a program
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security measure, μp a program performance measure and T
a control flow removal algorithm.

The problem of policy-aware security and performance

trade-off (PASAPTO) analysis is to produce – in expected
polynomial time – a set of programs P such that each program
P ′ ∈ P is (i) a T -transformation of P , that is P ′ = T (P, t)
for some binary vector t ∈ {0, 1}|T |, (ii) compliant with policy
Ψ and (iii) Pareto-optimal with respect to (μs, μp).

E. Notation

We write x ←$ X to sample x uniformly at random from

a set X . |X| denotes the cardinality of a set X . We assume

the base of the logarithmic function to be 2.

We denote the i-th unit vector by ei. By 0m,n we denote

the m× n matrix with all entries equal to zero. For a vector

v we write vi to select the i-th component of v and for a

matrix A we write Ai,: to select the i-th row and A:,j to

select the j-th column. For two matrices A,B ∈ Rm×n we

write A◦B to denote the Hadamard product of A and B, i.e.,

the componentwise multiplication.

III. QUANTIFYING CONTROL FLOW LEAKAGE

In this section, we present two program security measures

(instances of μs) capturing the adversarial information flow

resulting from the observation of control flow decisions.

To evaluate the security of programs, we rely on established

quantitative information flow (QIF) techniques and informa-

tion theory [6], [29], [41], [51]. Our QIF analysis is decom-

posed into two steps: an algebraic interpretation followed by

a numerical evaluation. First, we capture the view of any

adversary as an equivalence relation on the initial states of a

program. Then, we quantitize the equivalence relation to arrive

at a numeric value expressing the adversarial information flow

when executing the program. The primary benefit of a two-step

QIF analysis is that each of the two steps can be considered

independently.

A. Algebraic Interpretation

We model the information flow to an observer resulting

from an execution of a program as an equivalence relation

R on its initial states. R ⊆ I × I relates two states if

an observer cannot distinguish between them. R is called

indistinguishability relation and induces an indistinguishability
partition I/R on the set of all possible initial states I .

In the extreme case of R = I × I , the observer cannot

distinguish between any of the program’s states and has

learned nothing from its observation. If, on the other hand,

the equivalence classes are singleton sets, the observer has

perfect knowledge of the program’s initial state. Intuitively,

the higher the number of equivalence classes and the smaller

the classes, the more information is revealed to the attacker.

We use symbolic execution to compute the indistinguisha-

bility partition. Symbolic execution [28] is a method of

program evaluation using symbolic variables and expressions

rather than actual input values. We obtain symbolic program

paths which aggregate input values leading to the same control

flow. The resulting equivalence classes contain input values

indistinguishable from the point of view of an adversary. We

assume the existence of a function Π mapping a program

P = (S, Tr, I, F ) to its indistinguishability partition, i.e.,

Π(P ) := I/R, using symbolic execution.

B. Numerical Evaluation

For the second step, a multitude of valuations have been

proposed in the literature [6], [29], [41]. It should be noted

that neither of the established definitions is superior to any

other definition in all cases. The valuation to use depends on

the system model, the adversary model and the question that

is supposed to be answered.

We are concerned with the question ”How much information

can an attacker gain from observing the system?” [41] and

define two security metrics measuring the answer in bits. We

measure the uncertainty of an attacker about the initial state of

a program using the information-theoretic concept of entropy.

The adversarial information flow (leakage) is then defined as

the reduction in uncertainty before and after observing the

program’s control flow.

1) Probability and Information Theory:

Definition 10 (Shannon Entropy). Let X be a discrete random
variable with possible values E = {x1, . . . , xn} and proba-
bility mass function pX(x). The Shannon entropy (or entropy)
is defined as

H(X) := −
n∑

i=1

pX(xi) log pX(xi).

Definition 11 (Conditional Shannon Entropy). Let X and Y
be discrete random variables with probability mass functions
pX(x) and pY (y). The conditional Shannon entropy of X
given Y is defined as

H(X|Y ) := −
∑

x∈X ,y∈Y
pX,Y (x, y) log

pX,Y (x, y)

pY (y)
,

where X and Y denote the support sets of X and Y and pX,Y

the joint probability mass function of X and Y .

Definition 12 (Conditional Minimal Entropy). Let X and Y
be discrete random variables with probability mass functions
pX(x) and pY (y). The conditional minimal entropy of X
given Y is defined as

H∞(X|Y ) := min
y∈Y

H(X|Y = y),

where Y denotes the support set of Y .

2) Two Information Flow Measures: Let P = (S, Tr, I,
F ) be a program and R the indistinguishability relation after

observing the control flow. We define two discrete random

variables [6]: U : I → I with probability distribution p : I →
R represents the distribution of the initial states. VR : I → I/R
maps each initial state to its equivalence class according to R.

233



Definition 13 (Average Information Flow). Let P , U , VR be
as before. We define the Average Information Flow of P as

μ̄(P ) := H(U)−H(U|VR).
Definition 14 (Maximum Information Flow). Let P , U , VR
be as before. We define the Maximum Information Flow of P
as

μmax(P ) := H(U)−H∞(U|VR).
The average information flow measures the leakage of

a program using weighted averaging over all equivalence

classes. The maximum information flow only considers the

smallest equivalence class, thus it measures the worst-case

leakage of a program. An example illustrating average and

maximum information flow can be found in Appendix A-A.

IV. DETERMINING AND ESTABLISHING

POLICY-COMPLIANCE

In this section, we first show how to quantify variable-

specific leakage in order to support quantitative information

flow policies. Then, we describe how a program P violating

a given quantitative information flow policy Ψ can be trans-

formed into a program variant P ′ complying with Ψ.

As defined in Definition 1, we consider a program P
compliant with a quantitative information flow policy Ψ iff

the adversarial information flow of P does not exceed Ψ(v)
for any variable v. Formally:

P is compliant with Ψ⇔ ∀v ∈ V : μvar(P, v) ≤ Ψ(v)

μvar(P, v) refers to the maximum information flow of variable

v when executing P . Since Ψ(v) defines an upper bound on

the adversarial information flow for variable v, we must use

a worst-case information flow measure. In the following, we

construct this measure based on our results from the previous

section.

Consider random variable U which distinguishes the initial

states from each other. To define a variable-specific measure

for variable vi, we want to distinguish only states with

differing values of variable vi. To this end, we consider a

partition on the initial states fulfilling the following relation.

Two states are equivalent iff the variable assignments of the

i-th variable are equal. We denote this partition by I/vi
and

define U|vi
: I → I/vi

. Note that U|vi
is a random variable as

well. We can now define a variable-specific information flow

measure.

Definition 15 (Variable-Specific Information Flow). Let P , U ,
VR be as defined in III-B2 and let vi ∈ V be a variable of P .
We define the Variable-Specific Information Flow of vi as

μvar(P, vi) := H(U|vi
)−H∞(U|vi

|VR).
An example of variable-specific information flow is pre-

sented in Appendix A-B.

If a program P violates a policy Ψ, then there exists some

v ∈ V such that the adversarial information flow exceeds

the defined threshold Ψ(v). In order for P ′ to be compliant

with Ψ, the adversarial information flow with regards to

v must be decreased. Adversarial information flow results

from the adversary’s ability to observe the control flow of a

program. Hence, adversarial information flow with regards to a

variable v can be reduced by removing control flow statements

involving data from v. To this end, a control flow removal

algorithm T as defined in Definition 3 can be applied. Note

that policy-compliance can always be established since T can

be used to hide all control flow transitions of a program.

V. POLICY-AWARE SECURITY AND PERFORMANCE

TRADE-OFF ANALYSIS

In this section, we first formalize the problem of policy-

aware security and performance trade-off (PASAPTO) analysis

as an optimization problem. We then define a decision problem

based on the optimization problem and show its NP-hardness.

Finally, we present a greedy heuristic and a genetic algorithm

efficiently approximating a solution to the optimization prob-

lem.

Given a control flow removal algorithm T , besides es-

tablishing policy-compliance, we can also explore the trade-

off between security and performance (see Definition 9).

More precisely, each t ∈ {0, 1}|T | can be interpreted as a

specific selection of a trade-off. The problem of finding those

transitions corresponding to a policy-compliant program with

optimal security and performance can be expressed as an

optimization problem with objective function

f(t) :=

(
μs(T (P, t))
μp(T (P, t))

)
.

In more detail, we are interested in the argument minimum for

the cost function f(t) such that the program T (P, t) complies

with Ψ. Formally:

argmin
t

f(t)

s.t. T (P, t) is compliant with Ψ,

t ∈ {0, 1}|T |
(1)

Since f has multiple objectives, solving this optimization

problem will in general not yield a single optimal function

argument, but a set of Pareto-optimal solutions.

To analyze the complexity of the problem, we define its

corresponding decision problem and a class of security and

performance functions which allow to construct programs with

certain behaviour.

Definition 16. Let μvar be a variable-specific information flow
measure and μp be a program performance measure. We call
(μvar, μp) polynomial-time linear expandable iff:

1) ∀P ∈ P ∀n ∈ N0 ∀v ∈ V : we can modify P (in
polynomial time) to P ′ by adding a control flow decision
τi such that for ti = 1 : μvar(P

′, v) = μvar(P, v) + n
and ∀v′ ∈ V, v′ �= v : μvar(P

′, v′) = μvar(P, v
′).

2) ∀P ∈ P ∀n ∈ N0 ∀τi ∈ T : we can modify (in poly-
nomial time) P to P ′ such that for ti = 1 : μp(P

′) =
μp(P ) + c and for ti = 0 : μp(P

′) = μp(P ) + 2c.
3) For the empty program P0 it applies that μp(P0) = 0

and ∀v ∈ V : μvar(P0, v) = 0.
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Definition 17 (PASAPTO Decision Problem). Given P,Ψ,
μvar, μs, μp and ks, kp ∈ N0, the PASAPTO decision problem

is to decide whether ∃t ∈ {0, 1}|T | : T (P, t) is compliant to
Ψ ∧ μs (T (P, t)) ≤ ks ∧ μp (T (P, t)) ≤ kp.

Theorem 1. If (μvar, μp) are polynomial-time linear expand-
able, then the PASAPTO decision problem is NP-hard.

Proof Sketch. We show a reduction from the 0-1 integer linear

programming (0-1-ILP) decision problem, which is known to

be a NP-complete. Thereby, every 0-1-ILP variable represents

a control flow decision and every 0-1-ILP condition represents

a variable in the program. If a control flow decision is

revealed, the leakage of each variable shall be increased by

the corresponding coefficient in the 0-1-ILP conditions. Thus,

the policy represents the conditions of the 0-1-ILP and the

performance represents the objective function. The full proof

can be found in Appendix B.

Corollary 1.1. If μvar, μs and μp can be computed in
polynomial time (e.g., constant time), then the PASAPTO
decision problem is NP-complete.

To overcome the time complexity implications of Theo-

rem 1, we can employ heuristic approaches to efficiently find

satisfactory solutions. A heuristic may not necessarily find

optimal solutions, but we require any returned solution to

satisfy the constraints, i.e., to be policy compliant.

A naı̈ve heuristic could assume that removing a control flow

transition always decreases the adversarial information flow.

We can describe this assumption formally as follows. Let ≤p⊆
{0, 1}|T | × {0, 1}|T | be a partial order defined as t ≤p t′ :⇔
∀i ∈ [1, |T |] : ti ≤ t′i. For a given program P and a security

measure μs we consider g(t) := μs(T (P, t)) as a function

with input t ∈ {0, 1}|T |. Then, the stated assumption is equal

to g(t) being monotonic increasing. We can prove that this

assumption does not hold.

Theorem 2. Let ≤p and g(t) be as defined before. Then, g(t)
is not monotonic increasing in the variable t ∈ {0, 1}|T | for
partial order ≤p. Formally, t ≤p t′ � g(t) ≤ g(t′).

Proof. See Appendix C for a proof by contradiction.

Even if there is no general structure, one could find some

special cases where the monotony assumption holds. For

example, a program without any nested conditions, as well

as the restriction of removing only inner conditions of a pro-

gram with nested ones fulfill this assumption. Our heuristics

implicitly take this knowledge into account.

In the remainder of this section, we present a greedy

heuristic providing fast convergence and a genetic algorithm

providing well distributed solutions.

A. GreedyPASAPTO: A greedy heuristic

Our first algorithm GreedyPASAPTO (Greedy Policy-

aware Security and Performance Trade-off Analysis) is a

greedy heuristic providing fast convergence. Starting point

of this algorithm is a transformation of P not containing

Require: P – Program under inspection

Ψ – Quantitative information flow policy

Ensure: P – Non-dominated set of program variants of P
1: procedure GREEDYPASAPTO(P,Ψ)

2: T := filterControlFlow(P)
3: V := computeVariableSpace(P)
4: B := {0|T |,1}
5: P := ∅
6: while B �= ∅ do
7: t←$ B
8: B := ∅
9: for all i ∈ {n ∈ N | 1 ≤ n ≤ |T |, tn = 0} do

10: t′ := t+ ei
11: if ∀v ∈ V : μvar(T (P, t′), v) ≤ Ψ(v) then
12: B := B ∪ {t′}
13: end if
14: end for
15: P := P ∪ {T (P, t) | t ∈ B}
16: P := filterNonDominated(P)
17: for all t′ ∈ {t ∈ B | T (P, t) /∈ P} do
18: B := B \ {t′}
19: end for
20: end while
21: return P
22: end procedure

Figure 2: GreedyPASAPTO: Greedy Heuristic

any control flow transitions. We call this program the all-
hidden program. We know that this program is compliant

with Ψ, because it does not entail any adversarial information

flow at all. Based on the all-hidden program, we iteratively

reveal control flow transitions until revealing any other control

flow transition would lead to a non-compliant or dominated

program. By incrementally revealing control flow transitions,

we expect to gradually obtain policy-compliant programs with

better performance.

Structure: GreedyPASAPTO is structured as follows. It

takes as input a program P and a quantitative information

flow policy Ψ and outputs a non-dominated set of programs

P. In each iteration step, we consider a base program, starting

with the all-hidden program in the first step, and a bit vector

set B corresponding to programs with one additional control

flow transition revealed. We filter any policy-compliant and

non-dominated program and add its corresponding bit vector

to the current bit vector set B. The algorithm terminates if

every program is non-compliant or dominated by a program

of the solution set or if there is no more transition to reveal.

Each program corresponding to an element of B is added to

the solution set. One of these programs is randomly chosen as

a base for the next iteration step. Filtering non-dominated pro-

grams is achieved by the subroutine filterNonDominated(·)
that on input a set of programs outputs the maximum subset

of non-dominated programs. The details of GreedyPASAPTO
are presented in Algorithm 2.
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Alternative approach: We prefer the approach of starting

with the all-hidden program and revealing control flow transi-

tions over the alternative of starting with the all-revealed, i.e.,

the original, program and removing control flow transitions

for two reasons. First, the program our algorithm starts with

is guaranteed to be policy-compliant. The alternative approach

on the other hand has to somehow establish policy-compliance

by investigating other program variants. In doing so, a large

number of non-compliant programs may have to investigated.

Second, one could think that in the alternative approach

removing additional control flow from a policy-compliant pro-

gram would always lead to another policy-compliant program

and hence policy-compliance does not have to be checked

again. However, Theorem 2 shows that this is not true in the

general case and hence policy-compliance has to be checked

for each candidate program.

B. GeneticPASAPTO: A genetic algorithm

GeneticPASAPTO (Genetic Policy-aware Security and

Performance Trade-off Analysis) is a heuristic approach for

solving optimization problem (1) based on a genetic meta-

heuristic. Genetic algorithms do not require any a priori

knowledge about the structure of the search space, thus they

fit our problem very well. In contrast to our greedy heuristic,

a whole set of not necessarily policy-compliant solutions, the

so-called population, is considered and used to generate new

solutions. GeneticPASAPTO selects the fittest individuals,

i.e. binary vectors of size |T |, from the population according

to some fitness function. Based on the selected individuals,

by using so-called crossing and mutation, new individuals

are generated which replace the least fittest individuals in

the population. This procedure is repeated until a sufficiently

large amount of non-dominated solutions have been found or

a running time bound has been reached.

Our genetic algorithm uses a population size of N deter-

mined by the developer. The algorithm outputs for a pro-

gram P and a quantitative information flow policy Ψ a non-

dominated set of policy-compliant programs of size at most

N . Since genetic algorithms may converge to one solution,

to obtain a wide selection of solutions for the developer,

GeneticPASAPTO uses niching methods [40]. The details

of GeneticPASAPTO are presented in Appendix D.

Fitness function: Our fitness function F is based on a

ranking [21] which takes policy-compliance into account. To

an individual i we assign Fi := N − k if it is dominated

by k individuals in the current population. If a program is not

policy-compliant, we assign Fi := 0 to penalize such solutions

and prefer complying programs.

Crossing and Mutation: In the context of genetic algo-

rithms each component of an individual is called a gene. We

cross two individuals by switching the first half of the genes

of the parents. For those individuals, mutation is applied with

a probability of 1
|T | for each gene, i.e. the gene is inverted.

Niching: We choose Sharing [24, pp. 41-49.], [27] as

our niching method, because it is recommended for multi-

objective optimization [40, p. 84]. If two individuals of a

population are in the same niche, i.e., their distance is below

a certain threshold σ called the sharing parameter, their fitness

is shared. The sharing parameter σ should be chosen carefully.

An estimation of a good selection of σ based on the bounds of

the search space has been made by Fonseca and Fleming [21].

Applied to our problem, we obtain the unambiguous solution

σ =
M1 +M2 − (m1 +m2)

N − 1
,

We approximate the bounds of the search space using the

properties of two well-known programs. We expect the all-

revealed program to have high leakage but good performance.

On the other hand, we expect the all-hidden program to have

no leakage but bad performance.

By determining the distance of two points, we do not

want to weight the influence of one dimension over another,

because they may have different size scales. To this end, we

standardize both dimensions with respect to the maximum

values of the programs above. This leads to the following

choice of parameters:

M1 :=
μs(P )

μs(P )
= 1 m1 :=

μs(P̂ )

μs(P )
= 0

M2 :=
μp(P̂ )

μp(P̂ )
= 1 m2 :=

μp(P )

μp(P̂ )
,

where P̂ := T (P, (0, . . . , 0)T ) represents the all-hidden pro-

gram. In the following, we denote the scale factor by

S :=

(
1

μs(P )
,

1

μp(P̂ )

)T

.

The fitness is now shared with other individuals in the same

niche. We define a sharing function [24, p. 45],

sh : [0,∞)→ [0, 1]

with

sh(d) :=

{
1− d

σ , if d < σ

0, otherwise

where d describes a metric of two points in the search space.

We use the Euclidean metric in the following.

Based on the simple fitness function F we can now define

a shared fitness function F ′. F ′ takes as arguments an indi-

vidual i and a matrix M which contains the individuals of a

population as columns.

F ′(i,M) :=
Fi∑N

j=1 sh(d(f(M:,i) ◦ S, f(M:,j) ◦ S))
Convergence: Based on the shared fitness function the

evolution process is repeated until the maximum number of

iterations (user-defined parameter X) is reached or the conver-

gence criterion is fulfilled. We use Maximum Allowable Pareto

Percentage as our convergence criterion, i.e., the algorithm

terminates if the percentage of non-dominated individuals in

the current population exceeds the user-defined threshold α.

By default, we use α = 0.7. The quality of the solution set

depends on carefully chosen parameters α and X .
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VI. APPLICATION TO SECURE CLOUD COMPUTING

In this section, we construct a PASAPTO analysis for

Dataflow Authentication (DFAuth) [20], an approach for out-

sourcing computations.

A. Dataflow Authentication

DFAuth computes on encrypted data in the cloud using

a combination of homomorphic encryption and a Trusted

Module (TM), e.g., an Intel SGX enclave [3], [26], [43].

Compared to a solution relying solely on SGX, DFAuth offers

a number of advantages. Since software vulnerabilities in the

enclave can be used to disarm the security guarantees of

SGX [34] and the number of vulnerabilities scales with the

size of the code base, it is advisable to keep the trusted

code base (TCB) in the enclave as small as possible. DFAuth

minimizes the exposure to vulnerabilities by providing a small

and program-independent TCB, which can be reused across

applications. Application vulnerabilities are confined to the

untrusted program computing on encrypted data. Due to its

small size, the TCB in the TM can be hardened similar to

implementations of cryptographic primitives. For example, the

TM implementation can be made branchless, heapless and

constant-time.

System Overview: DFAuth [20] considers a scenario

between a trusted client and an untrusted cloud server, which

is equipped with a Trusted Module (TM). The client wishes

to execute a program on sensitive data at the cloud server.

In the setup phase, the client transforms the intended pro-

gram using a DFAuth-enabled compiler. The client transfers

the transformed program to the server and (securely) deploys

program metadata into the TM. In the runtime phase, the client

encrypts its inputs before transferring them to the server. The

server executes the program and returns an encrypted result to

the client. On the server, DFAuth performs computations effi-

ciently in unprotected memory using partially-homomorphic

encryption (PHE). Conversions between incompatible PHE

schemes and comparisons for control-flow decisions are per-

formed through TM invocations. To allow efficient program

execution (cf. Introduction), DFAuth does not protect the

control flow of the executed program.

Adversary Model: DFAuth assumes an active adversary

controlling the cloud server [20], who can (i) read and modify

the contents of all variables and the program text (except in

the TM) (ii) observe and modify the control flow (except in

the TM) (iii) do all of this arbitrarily interleaved.

The security guarantee of DFAuth is to reveal only the infor-

mation about the inputs to the untrusted cloud server that can

be inferred from the program’s executed control flow. DFAuth

reduces an active to a passive adversary by preventing the

adversary from learning any information beyond the intended

information flow of the program.

B. A PASAPTO Analysis for DFAuth

Inherently, DFAuth considers an active adversary, but due to

its security guarantees any adversary is limited to passively ob-

serving the control flow of the program executed on the cloud

server. Recall from Section II-B that in this work we consider

a passive adversary capable of continuously observing the

control flow of an execution of a program. As such, we can

extend DFAuth with a PASAPTO analysis to further reduce the

adversarial information flow. This combination forms the basis

of our implementation of a Dataflow Authentication Trade-off

Analyzer (DFATA), which is explained in more detail in the

next section.

Security and Performance Measures: In Section III we

presented two program security measures capturing the leak-

age resulting from control flow observations. Both, average

information flow (μ̄) and maximum information flow (μmax),

can be used to instantiate the program security measure μs. To

determine compliance of a program with a quantitative infor-

mation flow policy, we apply the variable-specific information

flow measure (μvar) introduced in Section IV.

We consider two instantiations of the program performance

measure μp. The running time performance measure μ̂ cap-

tures the elapsed wall-clock time of the execution of a DFAuth-

transformed program. An alternative program performance

measure can be defined by applying program analysis tech-

niques to count the instructions used by the program and assign

each DFAuth operation a cost value. However, this measure is

outside of the scope of this work.

Control Flow Removal Algorithm: We consider two

instantiations of T which we refer to as straightlining (Ts)

and oblivious state update (To). Ts rewrites code fragments

containing conditional instructions into semantically equiv-

alent code not containing any control flow transitions. For

example, bitwise operations can be combined with a constant-

time conditional assignment operation to avoid conditional

instructions [44]. To executes both the then and the else branch

of a conditional [1], [48]. To forks the state of the program

before branching and obliviously updates the program state

with the correct one. To this end, we extend DFAuth with an

additional TM invocation. Provided with the two state variants

and the conditional, the TM determines the correct variant and

returns it to the cloud server. Before returning, the correct

variant is re-randomized such that the untrusted part of the

server remains oblivious as to which of the two states was

returned. Note that this extension is in line with DFAuth’s

goal of a program-independent trusted code base [20].

VII. IMPLEMENTATION

In this section, we present details about DFATA, our Java-

based Dataflow Authentication Trade-off Analyzer. At the core

of our implementation is Soot, a framework for analyzing and

manipulating Java programs [33]. Soot is used to implement

our own DFAuth compiler, detection of control flow leaks and

control flow removal. We implement the DFAuth TM in an

SGX enclave.

We compute the indistinguishability partition required to

quantify control flow leakage based on JBSE (Java Bytecode

Symbolic Executor) [10], [11]. Using symbolic execution

we obtain the set of symbolic paths of a program and

the corresponding path conditions. By construction, the path
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conditions are equal to the constraints of each equivalence

class. We assume the random variable U to be distributed

uniformly and transform the constraints into a system of linear

inequalities for each equivalence class. The numeric evaluation

of each equivalence class is determined using LattE [39]. LattE

implements Barvinok’s algorithm [7] to compute the size of

the equivalence classes exactly and in polynomial time.

DFATA supports our two heuristics as well as an exhaustive

search trade-off analysis algorithm. DFATA takes Java Byte-

code operating on plaintext data and an associated information

flow policy as input. It outputs the result of the trade-off

analysis as a set of fully executable programs operating on

encrypted data using DFAuth.

DFATA currently operates only on a subset of Java. It

performs intra-procedural analysis and does not handle ex-

ceptions, because it is limited by its tools – DFAuth and the

QIF analysis. Extensions are possible, but orthogonal to our

work on heuristics. For an overview on techniques, tools and

trade-offs for model counting involving non-linear numeric

constraints, we refer to a survey by Borges et al. [9]. We refer

to Aydin et al. [5] for how to perform model counting on

string (sequences of characters) constraints and mixed string

and integer constraints. For multi-instantiation of a class in

a sensitive and an insensitive context, we refer to Dong et

al. [18]. Also, the current implementation is not optimized

for performance, but for the evaluation of the quality of our

heuristics.

VIII. EVALUATION

In this section, we present the results collected in two

experiments in which we applied DFATA. In the first experi-

ment, we consider an implementation of an electronic auction

with sealed bids. In the second experiment, we inspect a

program performing decision tree evaluation on medical data.

We chose these programs such that we are able to explore all

program variants in order to evaluate the effectiveness of our

heuristics, but complex enough to be non-trivial in the context

of computation on encrypted data (e.g., FHE, MPC).

In each experiment, we first use DFATA in exhaustive

mode to obtain all program variants as well as their average

information flow (μ̄) and running time performance (μ̂). We

determine μ̂ by executing each variant multiple times on ran-

dom inputs, then computing the mean over all measurements.

From these results, we determine the Pareto front of the

PASAPTO optimization problem. We then execute each of our

two probabilistic heuristics multiple times.

In each run, we compute the Hypervolume Indicator (HVI)

[58] of the heuristic solution set with respect to the dimensions

μ̄ and μ̂. The HVI is an established measure used to determine

the quality of multi-objective solution sets [4], [49]. We eval-

uate the quality of our algorithms using the relative difference

between the HVI of a heuristic solution set and the HVI of

the Pareto front:

HVIrel :=
HVIheuristic

HVIPareto front

− 1.

Elements of high quality solution sets according to HVIrel are

close to the Pareto front and cover a wide range of trade-offs.

For each experiment and heuristic, we perform 101 runs.

We perform an odd number of runs such that we can unam-

biguously identify a single run as the median run according

to HVIrel. Scatter plots presented in the following show data

points for this particular run. In addition to the median HVIrel,

we present the 95th percentile (Q0.95) of HVIrel over all runs.

Because our implementation of DFATA is not optimized

for performance, but for the evaluation of the quality of the

heuristics, we cannot provide wall-clock running times of our

heuristics. However, we can estimate the total running time t
of a heuristic by t = v ∗ (s + p) + h where v refers to the

number of program variants visited, s and p denote the time

to compute μ̄ respectively μ̂ of a program variant, and h refers

to the running time of the heuristic itself.

All experiments were conducted in the Microsoft Azure

Cloud using Azure Confidential Computing VM instances of

type Standard_DC4s. Each instance runs Ubuntu Linux

18.04 and has access to 4 cores of an SGX-capable Intel Xeon

E-2176G CPU and 16 GiB RAM.

A. Electronic Sealed-Bid Auction

In a sealed-bid auction, individual bids {h0, . . . , hn−1}
must be kept confidential. The winner of the auction is

identified by the highest bid and is announced publicly.
Experimental Setup: Consider the following pseudocode

implementing such an auction.

1 int auction(int[] h)
2 int l = 0;
3 for (int i = 0; i < h.length; i++)
4 if (h[i] > h[l])
5 l = i;
6 return l;

On input an array h containing n bids, the program determines

the identity of the winner l as the array index of the winning

bid. The input array h is ordered randomly to protect the

identities of the bidders. In doing so, we also ensure a fair

determination of the winner in case the highest bid does not

unambiguously identify a winner.

In this experiment, we assume n = 10. After loop un-

rolling, the resulting program performs n − 1 comparisons,

respectively control flow transition. Since one can decide

whether to reveal or hide for each transition, our algorithms

operate on a search space containing 2n−1 = 512 program

variants. For GeneticPASAPTO we use a population size of

N := 2 · |T | = 19 and a bound of X := 10 · |T | = 90.
Evaluation Results: Figure 3 shows the median leakage

and running time of all possible program variants grouped by

their number of hidden control flow transitions. The number of

variants per aggregation group is
(
n−1
k

)
where k is the number

of hidden control flow transitions. For example, the search

space contains
(
9
2

)
= 36 variants with 2 hidden transitions. The

chart experimentally confirms the negative correlation between

leakage and running time we expect.

Figure 4 relates the behaviour of the median run of

GreedyPASAPTO to the entire search space. Figure 5 does
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Figure 3: Median leakage (left y-axis) and median running

time (right y-axis) of the set of all Auction program variants

grouped by number of hidden control flow transitions.
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Figure 4: Greedy algorithm applied to Auction Program.
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Figure 5: Genetic algorithm applied to Auction Program

the same for GeneticPASAPTO. Each plot contains the

entire search space of 512 program variants. The distinguished

all-hidden and all-revealed programs are highlighted. The set

of Pareto-optimal programs is a subset of the search space

and contains elements of the Pareto front of the PASAPTO

optimization problem. The set of visited programs is a subset

of the search space and contains programs which have been

investigated by the algorithm. Points marked as solution are

part of the solution set output by the algorithm.

As is expected, no program with worse performance than the

all-hidden program exists. One would expect the all-revealed

program to provide the best performance, but DFATA found

another one with better performance. However, we believe

this to be only due to the inaccurate nature of the running

time measurement. The performance range over all program

variants reaches from 7.84 ms for the best performing program

to 15.63 ms for the all-hidden program. The security range

reaches from a leakage of 0 bits for the all-hidden program to

5.723 bits for the all-revealed program.

In Figure 4 we can see that GreedyPASAPTO visited

only 46 points and output 18 points in the solution set. The

algorithm still found a solution close to the Pareto front.

In the median, the heuristic solution is HVIrel = 5.35%
(Q0.95 = 19.18%) worse than the Pareto front.

In Figure 5 we can see that GeneticPASAPTO also

produced a solution close to the Pareto front, but visited

38 programs and output 13 in the solution set. For the

genetic algorithm, we obtain HVIrel = 19.47% with Q0.95 =
30.36%. Even if the quality of the median run is worse

than the quality of GreedyPASAPTO, we can repeat the

execution of GeneticPASAPTO to obtain a higher quality

since the algorithm is probabilistic. Moreover, the advantage of

GeneticPASAPTO is that it can potentially find any solution,

whereas GreedyPASAPTO could miss some solutions in

every run by structure.

In this experiment, measuring the QIF of a program vari-

ant approximately takes time s = 26 s and measuring the

performance of a program variant approximately takes time

p = 12ms. In conclusion, the running time would be roughly

t = 1200 s for GreedyPASAPTO (h = 0.1ms), and t =
1000 s for GeneticPASAPTO (h = 6ms).

B. Decision Tree Evaluation

In this experiment, we use DFATA on a program perform-

ing decision tree (DT) evaluation on sensitive medical data.

Consider the use case of a research institution providing a DT

evaluation service to medical institutions such as hospitals.

Medical institutions can submit patient’s health data and obtain

the result of the DT classification to aid their diagnosis. Since

patient data is highly confidential, the research institution has

to compute on encrypted data using DFAuth.

The security goal is to protect the sensitive inputs to the

decision tree. The sensitivity of each input is provided as

a quantitative information flow policy. The protection of the

output of the decision tree is not a security goal and may be

learned by the DT service provider.

Experimental Setup: We consider a program making

predictions about breast cancer based on the decision tree by

Sumbaly et al. [52]. Provided with medical information, the

program outputs a prediction of whether or not the patient has

breast cancer. The pruned decision tree takes six input vari-

ables and performs 13 control flow decisions. Thus, the size

of the search space is 213 = 8192. The attribute represented

by each variable is described in Table I.
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Table I: Overview on variables and our QIF policy

Variable Attribute Ψ(vi)
v1 Clump Thickness 2
v2 Uniformity Cell Size ∞
v3 Uniformity Cell Shape ∞
v4 Marginal Adhesion 1
v5 Bare Nuclei ∞
v6 Bland Chromatin 0
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Figure 6: Median leakage of the set of all Decision Tree

program variants grouped by number of hidden control flow

transitions.
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Figure 7: Median running time of the set of all Decision Tree

program variants grouped by number of hidden control flow

transitions.

Input variables are integers in the interval [1, 10], which

our leakage model captures accordingly. The information of

each variable is log(10) = 3.32. Our analysis can take into

account that not all variables are equally sensitive. Under the

assumption that (i) the Bland Chromatin attribute is critically

sensitive and no information about it must leak, (ii) the Clump

Thickness attribute is highly sensitive, (iii) the Marginal Ad-

hesion attribute is sensitive and (iv) all other variables are not

sensitive, a developer may define a quantitative information

flow policy as presented in the third column of Table I. We will

assume this policy in our experiment. For GeneticPASAPTO
we use a population size of N := 4 · |T | = 52 and a bound

of X := 20 · |T | = 260.

Evaluation Results: Figures 6 and 7 present results con-

cerning the search space, i.e., all program variants. Figures 8

and 9 present the results of our two heuristic algorithms.

Figure 6 shows leakage depending on the number of hidden

control flow transitions. For k hidden transitions,
(
13
k

)
pro-

grams are aggregated. In contrast to the previous experiment

(see Figure 3), we can see that the median leakage does

not decrease before more than 7 transitions are hidden. The

mean leakage even increases in comparison to the all-revealed

program. This highlights that as per Theorem 2 leakage can

increase when removing control flow transitions.

Figure 7 shows the running time depending on the number

of hidden transitions. In particular, the minimum of aggregated

variants shows that up to 8 transitions can be hidden without

significantly increasing the running time. The analysis shows

that the leakage and running time of complex programs is not

linear in the number of hidden transitions and it is important

to find combinations of hidden transitions that barely increase

the running time, but significantly reduce leakage.

Figures 8 and 9 present the results of the median runs for

each of our two algorithms. Note that for this experiment, we

do not show the data points of all 8192 program variants, but

only those which are policy-compliant or have been visited

by our heuristic. The performance range over all policy-

compliant program variants reaches from 4.231 ms for the

best performing program to 19.341 ms for the all-hidden

program. The security range reaches from a leakage of 0
bits for the all-hidden program to a program variant with

3.358 bits leakage. This is even higher than the leakage of

the non-compliant all-revealed program with 2.447 bits and

additionally has a worse performance of 7.891 ms compared

to 2.720 ms. This experimentally confirms Theorem 2, which

says that the adversarial information flow might increase when

removing control-flow.

As in the auction experiment, GreedyPASAPTO only eval-

uated a few variants and still produced a solution close to the

Pareto front. The algorithm inspected 86 program variants and

output 14 programs in the solution set. Visited points that are

better than the Pareto front are not compliant with our policy

and are not added to the solution set. For this algorithm, we

have HVIrel = 1.76% with the 95th percentile Q0.95 = 3.57%.

The best running time for a policy-compliant program is 4.231
ms, which is also the best running time on the Pareto front.

GeneticPASAPTO visited 415 program variants and out-

put 11 programs in the solution set. Recall that a design goal of

this algorithm is the diversity of the elements in the solution

set, which is implemented using Niching. For example, the

solution set of GreedyPASAPTO contains clusters of non-

dominated solutions, e.g., a lot of program variants with

running time between 4 and 5 ms with a large difference in

leakage but only little difference in performance. In contrast,

Niching avoids clustering and outputs a solution set with

sufficiently differing values to simplify the choice of the

developer. This can lead to a lower quality solution, because

it can cause the fitness of two optimal points to be shared

resulting in both being possibly removed from the population.

For this algorithm, we have HVIrel = 14.08% with the 95th

percentile of Q0.95 = 33.80%. The best running time found for

a policy-compliant program is 5.353 ms which is 26.5% worse

than the best running time on the Pareto front. The second
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Figure 8: Greedy algorithm applied to Decision Tree Program
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Figure 9: Genetic algorithm applied to Decision Tree Program

experiment provides better solutions than the first one. We

believe this is caused by the fact that the second experiment

has more structure that can be used by the heuristics.

In this experiment, measuring the QIF of a program vari-

ant approximately takes time s = 15 s and measuring the

performance of a program variant approximately takes time

p = 8ms. In conclusion, the running time would be roughly

t = 1250 s for GreedyPASAPTO (h = 0.5ms), and t =
6200 s for GeneticPASAPTO (h = 3 s).

Since the running time is dominated by the QIF analysis,

we note that a further, possibly very effective optimization

is to update the QIF measure, instead of re-computing it

from scratch. We do not have an estimate how effective that

optimization would be.

IX. RELATED WORK

Our work is related to the Trade-off between Security and
Performance, Language-Based Information Flow Security and

(Control Flow) Side Channels and Defenses.

Trade-off between Security and Performance: This trade-

off has for example been explored in the context of secured

networked control systems [56], cyber-physical systems [57],

block ciphers [53], timing attacks in cryptographic code [19]

and range queries on encrypted data [36].

Wolter et al. [54] present a generic security-performance

trade-off model based on generalised stochastic Petri nets.

However, their model assumes that recovery from an insecure

system state is possible. We do not think that recovery from

adversarial information flows is possible, hence their model

cannot be applied in our case.

Language-Based Information Flow Security: For an

overview on language-based information flow security, we

refer to a survey by Sabelfeld and Myers [50].

The program security measures considered in this work are

based on the concept of quantitative information flow (QIF)

and inspired by the work of Backes et al. [6]. For foundations

of QIF, we refer to Köpf and Basin [31], Smith [51], Heusser

and Malacaria [25], Malacaria [41] and Klebanov [29]. Our

measures are exact rather than approximate and are based on a

two-step QIF analysis consisting of an algebraic interpretation

followed by a numeric evaluation. The first step is based

on symbolic execution, which has been used previously for

information flow analysis [45]–[47]. Our PASAPTO analysis

does not mandate a specific program security measure, but

can be instanciated using other measures. For example: Leak-

watch [14] estimates leakage of Java programs by repeatedly

executing them. Malacaria et al. [42] consider an approx-

imation of information flow based on noisy side-channels.

Kučera et al. [32] use the concept of an attacker’s belief [15],

which orthogonally captures the attacker’s accuracy besides

uncertainty.

Information flow policies and checking for their compliance

has been considered in [2], [25], [55]. Policy establishment has

for example been considered in [2], [32]. Recently, Kučera et

al. [32] presented a program synthesis similar to our program

transformation. Their approach also takes a program and a

policy as inputs and outputs a policy-compliant program. How-

ever, their procedure only applies to probabilistic programs

and works by adding uncertainty to the program’s output while

we consider side-channels and preserve the original program’s

semantics.

(Control Flow) Side-Channels and Defenses: An ap-

proach to avoid a broad class of side-channels is to produce

constant-time code not making any control flow decisions

on secret data. Molnar et al. [44] present a source-to-source

transformation producing such code by relying on bitwise op-

erations and a constant-time conditional assignment operation.

Similarly, Cauligi et al. [13] define their own domain specific

language to produce code adhering to these requirements. Rac-

coon [48] transactionally executes both branches of a control

flow statement and ensures that the program state is updated

obliviously using the correct transaction. GhostRider [37]

defends against side-channels based on memory access pattern

by obfuscating programs such that their memory access pattern

is independent of control flow instructions.
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X. CONCLUSION

We show how to efficiently compute policy-compliant and

approximately Pareto-optimal trade-offs between leakage and

performance where the decision problem is NP-hard. For a

given Java Bytecode program our implementation proposes

semantically equivalent, side-channel reduced Java programs

for the execution within DFAuth-protected SGX enclaves from

which developers can select their desired trade-off. We show

the practical feasibility of this approach for computing on

encrypted data in a commercial cloud environment using

two example programs. The combined protection by DFAuth

(security against active attackers and program-independent

enclave code) and PASAPTO (performance-optimized side-

channel reduction) is more secure against a number of attacks

(side-channel analysis, software vulnerability exploitation)

than executing the unmodified program in SGX, but orders

of magnitude faster than executing the program using fully

homomorphic encryption.
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APPENDIX A

EXAMPLES

A. Average and maximum information flow measures

We illustrate our adversary model and the definitions of

indistinguishability partition and information flow measures
using the following program P .

1 int example1(int x)
2 if (x > 42)
3 x *= 2
4 return x

Any possible state of P contains one variable x. To simplify

the exposition, let us assume that the domain of x is D8 =
[−128, 127], i.e. x is a signed 8-bit integer. As the adversary

knows the program text, the domain of x is known before

the execution of the program. Hence the indistinguishability

partition contains a single equivalence class.

I/Rstart = {{x ∈ D8}}

By observing the control flow – more precisely whether the

then-branch (line 3) is taken or not – the attacker can infer

whether or not x > 42. The indistinguishability partition of

the program after observing the control flow (after program

execution) is thus

I/R = {{x ∈ D8 | x > 42}, {x ∈ D8 | x ≤ 42}}.

If we assume U to be distributed uniformly, i.e. each initial

state is equally likely, then the initial uncertainty is

H(U) = − log
1

28
= 8 bits.

The uncertainty after the control flow observation is given

by the conditional entropy. Each equivalence class E ∈ I/R
occurs with probability

|E|
|I| , thus we obtain

H(U|VR) = −
∑

E∈I/R

|E|
|I| log |E|

= − 85

256
log

1

85
− 171

256
log

1

171
= 7.08 bits. (2)

The average information flow of program P is

μ̄(P ) = 8− 7.08 = 0.92 bits.

In (2) we can see that the then-branch is less likely than

the else-branch but leads to a higher amount of information

flow. To determine the worst-case leakage we compute the

maximum information flow

μmax(P ) = H(U)−H∞(U|VR) = 8−
(
− log

1

85

)
= 1.59 bits,

which only considers the equivalence class associated with the

branch resulting in the largest adversarial information flow.

B. Variable-specific information flow

We consider the following example code of a program P
and the information flow policy Ψ with Ψ(x1) = 2 and

Ψ(x2) =∞.

1 int example3(int x1, int x2)
2 if (x1 > 42)
3 x1 += 2
4 if (x2 = 42)
5 x1 *= 2
6 return x1

To simplify the exposition, we limit the domain of x1 and x2

to D = D8 = [−128, 127], assume the inputs to be distributed

uniformally and let x = (x1, x2) denote the tuple of variables.

Hence the initial state is I = {x ∈ D×D} with an attacker’s

uncertainty of H(U) = log 28+8 = 16. Applying algorithm Π
we obtain the indistinguishability partition

I/R = {{x ∈ D ×D | x1 > 42 ∧ x2 = 42},
{x ∈ D ×D | x1 > 42 ∧ x2 �= 42},
{x ∈ D ×D | x1 ≤ 42 ∧ x2 = 42},
{x ∈ D ×D | x1 ≤ 42 ∧ x2 �= 42}}.

The worst-case overall uncertainty after observation amounts

H∞(U|VR) = 6.41, so the maximum information flow of the

program is μmax(P ) = 16−6.41 = 9.59 bits. For checking the

information flow policy Ψ we have to analyze the variables

on its own. In the following we will focus on variable x1,

because x2 will fulfill the policy in any case. Performing

a projection on variable x1 leads to a initial uncertainty of

H(U|x1
) = log 28 = 8 bits and a uncertainty after the

observation of H∞(U|x1
|VR) = log 85 = 6.41 bits. We obtain

μvar(P, x1) = 8− 6.41 = 1.59 bits.

Since μvar(P, x1) ≤ Ψ(x1) and μvar(P, x2) ≤ H(U|x2
) =

8 ≤ Ψ(x2), P complies to information flow policy Ψ.
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APPENDIX B

PROOF OF THEOREM 1

Proof. Given A = (ai,j) ∈ Zn×m, b ∈ Zn, c ∈ Zm and

k ∈ Z, the 0-1 integer linear programming (0-1-ILP) decision
problem is to decide whether there exists an x ∈ {0, 1}m
such that A · x ≤ b and c�x ≥ k. This problem is known

to be NP-complete. We perform a many-one reduction of the

PASAPTO decision problem to the 0-1-ILP decision problem

by transforming an 0-1-ILP instance I into a PASAPTO

instance we denote by Γ(I). Starting with the empty program

P0, we modify it as follows:

• For each column j of A we add a variable zj and two

control flow transitions tj and t̃j , which each leak 1 of

zj independently.

• For each row i of A we create a variable yi. For all

ai,j ∈ A, if ai,j < 0 then t̃j shall leak −ai,j of variable

yi, else tj shall leak ai,j of variable yi.
• Let csum :=

∑m
k=1 |ck|. For all cj in c, if cj < 0 then

each branch of tj needs csum − cj + 1 time and each

branch of t̃j needs csum +1 time, else each branch of tj
needs csum+1 and each branch of t̃j needs csum+cj+1
time.

• Let δ : Z→ N with

δ(z) :=

{
0, for z ≥ 0
−z, for z < 0

For each row i of A we define the policy Ψ(yi) = bi +∑m
k=1 δ(ai,k). For each column j of A define the policy

Ψ(zj) = 1.

Let kp = 3m(csum+1)+2csum+min (k, csum) and ks =∞.

For x ∈ {0, 1}m we denote x̃ as vector with the same size

as x and ∀xj : x̃j := 1 − xj . We show that the output Γ(I)
equals the output of I .

Lemma 1. For a 0-1-ILP I and its transformation Γ(I) =
(P,Ψ) it applies that:

1) {x | A · x ≤ b} =
{
x | T

(
P,

(
x
x̃

))
Ψ-compliant

}
We denote this set as S.

2) ∀x ∈ S :

c� ·x = μp

(
T
(
P,

(
x
x̃

)))
−3m(csum+1)−2csum

3) Let

F := {(y, z)� | T
(
P, (y, z)�

)
Ψ-compliant ∧ y /∈ S}

then ∀x ∈ S ∀f ∈ F :

μp

(
T
(
P,

(
x
x̃

)))
< μp (T (P, f))

and

μp (T (P, f)) > 3m(csum + 1) + 3csum

Proof. By construction.

Lemma 1 shows that the PASAPTO decision problem is

many-one reducible to the 0-1-ILP decision problem. This

shows that the PASAPTO decision problem is NP-hard.

x % 2 == 0

x <= 0 x >= 0

5 3 4 4

(a) Control flow of original
program P

x <= 0

x >= 0 x >= 0

1 8 7 X

(b) Control flow of program
variant P ′

Figure 10: Control flow graphs for proof in Appendix C

APPENDIX C

PROOF OF THEOREM 2

Proof by Contradiction. Consider the following code of pro-

gram P with input x ∈ D4 distributed uniformly and the

Maximum Information Flow measure μmax.

1 int example4(int x)
2 if (x % 2 == 0)
3 if (x <= 0)
4 x += 1
5 else
6 if (x >= 0)
7 x -= 2
8 return x

The control flow of program P is illustrated in Figure 10a in-

cluding the size of each indistinguishable equivalence class in

the end of a program path. We obtain a worst-case information

flow of μmax(P ) = 4−min{log 5, log 3, log 4} = 2.42 bits.

Consider the equivalent program P ′ := T (P, (0, 1, 1)T ).
That means P ′ does not contain the first control flow transition

(x % 2 == 0). To this end, it executes as well the then-

branch as the else-branch of the hidden control flow transition.

The adversary can now observe the control flow of both

branches for every input. The control flow of P ′ is illustrated

in Figure 10b, where ’X’ denotes an infeasible path. The

combination of branches leads to an increased information

flow of μmax(P
′) = 4−min{log 1, log 8, log 7} = 4 bits.

Summarizing,

(0, 1, 1)T ≤p (1, 1, 1)T

⇒ μmax(T (P, (0, 1, 1)T )) ≥ μmax(T (P, (1, 1, 1)T )).
We can conclude that there is no monotonic increasing struc-

ture in general.

APPENDIX D

ALGORITHMS

We present the details of GeneticPASAPTO in Fig-

ure 11. Testing the dominance is implemented by the sub-

routine dominates(t1 , t2 ) which on input two binary vectors

outputs � if the program T (P, t1) dominates the program

T (P, t2) and ⊥ otherwise. Dominance is defined in terms

of the objective function f(t) given by the optimization

problem. To simplify the depiction we use the function

updateFitness(ti , tj ), which reduces the fitness of individual

j by 1 if dominates(ti , tj ) = �. By Jm,n we denote the m×n
matrix with all entries equal to one.
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Require: P – Program under inspection

Ψ – Quantitative Information Flow Policy

N – Population size

α – Maximum Allowable Pareto Percentage

X – Maximum number of iterations

Ensure: P – Non-dominated set of compliant programs

1: procedure GENETICPASAPTO(P,Ψ, N, α,X)

2: T := filterControlFlow(P)
3: V := computeVariableSpace(P)
4: R := 0|T |,N
5: /∗ Compute share parameter ∗/
6: P̂ := T (P, 0|T |,1)
7: σ :=

2μp(P̂ )−μp(P )

μp(P̂ )(N−1)

8: /∗ random start selection ∗/
9: for i := 1 to N do

10: Ri,: ←$ {0, 1}|T |
11: end for
12: /∗ initial fitness ∗/
13: F := JN,1

14: F ′ := JN,1

15: for i := 1 to N do
16: Fi := N
17: if ∃v ∈ V : μvar(T (P,R:,i), v) > Ψ(v) then
18: Fi := 0
19: else
20: for j := 1 to N do
21: updateFitness(R:,j ,R:,i)
22: end for
23: F ′i := F ′(i, R)
24: end if
25: end for
26: paretoPercentage := 0
27: counter := 1
28: while paretoPercentage ≤ α ∧ counter ≤ X do
29: /∗ determine fittest and unfittest ∗/
30: fittestInd := argmaxi∈N F ′i
31: fittest := R:,fittestInd

32: secondFittestInd := maxi∈N\{fittestInd} F ′i
33: secondFittest := R:,secondFittestInd

34: a := argmini∈N F ′i
35: b := argmini∈N\{a} F

′
i

36: /∗ crossing ∗/
37: firstChild := fittest
38: secondChild := secondFittest
39: for i := 1 to � |T |2 � do
40: firstChild i := secondFittest i
41: secondChild i := fittest i
42: end for
43: /∗ mutation ∗/
44: randomVector ←$ {n ∈ N | 1 ≤ n ≤ N}|T |
45: for i := 1 to |T | do
46: if randomVector i = 1 then
47: firstChild i := firstChild i ⊕ 1
48: end if
49: if randomVector i = N then
50: secondChild i := secondChild i ⊕ 1
51: end if
52: end for

53: for i := 1 to N do
54: /∗ update after removing old ∗/
55: if dominates(R:,a ,R:,i) = � then
56: Fi := Fi + 1
57: end if
58: if dominates(R:,b ,R:,i) = � then
59: Fi := Fi + 1
60: end if
61: /∗ update after inserting new ∗/
62: updateFitness(firstChild ,R:,i)
63: updateFitness(secondChild ,R:,i)
64: F ′i := F ′(i, R:,·)
65: end for
66: /∗ Reinitialize ∗/
67: R:,a := firstChild
68: R:,b := secondChild
69: Fa := N
70: Fb := N
71: /∗ fitness of new ∗/
72: for i := 1 to N do
73: updateFitness(R:,i ,R:,a)
74: updateFitness(R:,i ,R:,b)
75: end for
76: if ∃v ∈ V : μvar(T (P,R:,a), v) > Ψ(v) then
77: Fa := 0
78: end if
79: if ∃v ∈ V : μvar(T (P,R:,b), v) > Ψ(v) then
80: Fb := 0
81: end if
82: F ′a := F ′(a,R)
83: F ′b := F ′(b, R)
84: /∗ update loop ∗/
85: n := 0
86: for i := 1 to N do
87: if Fi = N then
88: n := n+ 1
89: end if
90: end for
91: paretoPercentage := n

N
92: counter := counter + 1
93: end while
94: /∗ Prepare Return ∗/
95: P := ∅
96: for i := 1 to N do
97: if Fi = maxj Fj then
98: P := P ∪ {T (P,R:,i)}
99: end if
100: end for
101: return P
102: end procedure

Figure 11: GeneticPASAPTO: Genetic Algorithm
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